skip to main content


Search for: All records

Creators/Authors contains: "Tian, Fei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Boron arsenide (BAs) is a covalent semiconductor with a theoretical intrinsic thermal conductivity approaching 1300 W/m K. The existence of defects not only limits the thermal conductivity of BAs significantly but also changes its pressure-dependent thermal transport behavior. Using both picosecond transient thermoreflectance and femtosecond time-domain thermoreflectance techniques, we observed a non-monotonic dependence of thermal conductivity on pressure. This trend is not caused by the pressure-modulated phonon–phonon scattering, which was predicted to only change the thermal conductivity by 10%–20%, but a result of several competing effects, including defect–phonon scattering and modification of structural defects under high pressure. Our findings reveal the complexity of the defect-modulated thermal behavior under pressure.

     
    more » « less
  2. null (Ed.)
  3. Dual learning has attracted much attention in machine learning, computer vision and natural language processing communities. The core idea of dual learning is to leverage the duality between the primal task (mapping from domain X to domain Y) and dual task (mapping from domain Y to X) to boost the performances of both tasks. Existing dual learning framework forms a system with two agents (one primal model and one dual model) to utilize such duality. In this paper, we extend this framework by introducing multiple primal and dual models, and propose the multi-agent dual learning framework. Experiments on neural machine translation and image translation tasks demonstrate the effectiveness of the new framework. In particular, we set a new record on IWSLT 2014 German-to-English translation with a 35.44 BLEU score, achieve a 31.03 BLEU score on WMT 2014 English-to-German translation with over 2.6 BLEU improvement over the strong Transformer baseline, and set a new record of 49.61 BLEU score on the recent WMT 2018 English-to-German translation. 
    more » « less
  4. Abstract

    The thermal conductivity of boron arsenide (BAs) is believed to be influenced by phonon scattering selection rules due to its special phonon dispersion. Compression of BAs leads to significant changes in phonon dispersion, which allows for a test of first principles theories for how phonon dispersion affects three‐ and four‐phonon scattering rates. This study reports the thermal conductivity of BAs from 0 to 30 GPa. Thermal conductivity vs. pressure of BAs is measured by time‐domain thermoreflectance with a diamond anvil cell. In stark contrast to what is typical for nonmetallic crystals, BAs is observed to have a pressure independent thermal conductivity below 30 GPa. The thermal conductivity of nonmetallic crystals typically increases upon compression. The unusual pressure independence of BAs's thermal conductivity shows the important relationship between phonon dispersion properties and three‐ and four‐phonon scattering rates.

     
    more » « less
  5. Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched10B or11B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.

     
    more » « less
  6. Abstract

    In 2014, almost 16 million tons of surfactants were used globally for cleaning and industrial applications. As a result, massive quantities disperse into environmental compartments every day. There is great market interest in developing highly biodegradable, less‐toxic, and renewable alternatives to currently used petroleum‐based surfactants. Glycolipid surfactants, composed of a sugar headgroup and lipid tail, are effective surfactants and emulsifiers with a high tolerance to electrolytes and are easily tailored to address specific needs. The green synthesis and surfactant characteristics of a suite of cellobiosides and melibiosides were recently described. The biodegradability and toxicity of 1°‐alkyl‐O‐cellobiosides, 2°‐alkyl‐O‐cellobiosides, and 1°‐alkyl‐O‐melibiosides with straight‐chain alkyl tails of 8, 10, and 12 are reported in this study. Biodegradability was assessed by quantifying mineralization (CO2evolution). All of the glycosides were inherently biodegradable and most were readily biodegradable according to OECD and US environmental protection agency (EPA) definitions. The Microtox acute toxicity assay showed both chain length and headgroup had significant effects on toxicity, but most of the molecules were practically nontoxic according to EPA definitions with EC50values >100 mg L−1. Cytotoxicity to human lung (H1299) and keratinocyte cell lines (HaCaT) was measured by xCELLigence and MTS assays. Cytotoxicity values were comparable to similar glycosides previously reported. IC50values were determined but in general, exceeded surfactant concentrations that are found in the environment. These data demonstrate the promising nature of these molecules as green alternatives to petrochemical surfactants.

     
    more » « less
  7. Abstract

    From late‐summer 2013 to late‐summer 2014, a total of 20 moorings were maintained on the eastern Chukchi Sea shelf as part of five independent field programs. This provided the opportunity to analyze an extensive set of timeseries to obtain a broad view of the mean and seasonally varying hydrography and circulation over the course of the year. Year‐long mean bottom temperatures reflected the presence of the strong coastal circulation pathway, while mean bottom salinities were influenced by polynya/lead activity along the coast. The timing of the warm water appearance in spring/summer is linked to advection along the various flow pathways. The timing of the cold water appearance in fall/winter was not reflective of advection nor related to the time of freeze‐up. Near the latitude of Barrow Canyon, the cold water was accompanied by freshening. A one‐dimensional mixed‐layer model demonstrates that wind mixing, due to synoptic storms, overturns the water column resulting in the appearance of the cold water. The loitering pack ice in the region, together with warm southerly winds, melted ice and provided an intermittent source of fresh water that was mixed to depth according to the model. Farther north, the ambient stratification prohibits wind‐driven overturning, hence the cold water arrives from the south. The circulation during the warm and cold months of the year is different in both strength and pattern. Our study highlights the multitude of factors involved in setting the seasonal cycle of hydrography and circulation on the Chukchi shelf.

     
    more » « less